The paper “Interface Thermal Conductance of van der Waals Monolayers on Amorphous Substrates” with NETlab alum Ela Correa and Cameron Foss has been accepted for publication in IOP’s journal Nanotechnology (IF=3.5). In it, we discuss our model for interface thermal conductance (ITC) between 2-dimensional materials graphene and MoS2 and amorphous SiO2 substrates. We discover that the flexural acoustic branch in graphene plays a significant role in ITC, but gets modified by the van der Waals interaction with the substrate. The findings will have an impact on heat dissipation in 2-d nanoelectronics.  The accepted article can be accessed via this DOI link:


Interface thermal conductance between a monolayer and amorphous SiO2 substrate for graphene as a function of temperature T (a) and with relation to the spring coupling constant K_a dependence at T=300 K (b). Similarly for MoS_2 as a function of temperature T (c) and as a function of coupling constant K_a at room temperature (d).